

Lecture 13: Boosting

Applied Machine Learning

Volodymyr Kuleshov Cornell Tech

Part 1: Boosting and Ensembling

We are now going to look at ways in which multiple machine learning can be combined.

In particular, we will look at a way of combining models called *boosting*.

Review: Overfitting

Overfitting is one of the most common failure modes of machine learning.

- A very expressive model (a high degree polynomial) fits the training dataset perfectly.
- The model also makes wildly incorrect prediction outside this dataset, and doesn't generalize.

Review: Bagging

The idea of *bagging* is to reduce *overfitting* by averaging many models trained on random subsets of the data.

```
for i in range(n_models):
    # collect data samples and fit models
    X_i, y_i = sample_with_replacement(X, y, n_samples)
    model = Model().fit(X_i, y_i)
    ensemble.append(model)

# output average prediction at test time:
y_test = ensemble.average_prediction(y_test)
```

The data samples are taken with replacement and known as bootstrap samples.

Review: Underfitting

Underfitting is another common problem in machine learning.

- The model is too simple to fit the data well (e.g., approximating a high degree polynomial with linear regression).
- As a result, the model is not accurate on training data and is not accurate on new data.

Boosting

The idea of *boosting* is to reduce *underfitting* by combining models that correct each others' errors.

- As in bagging, we combine many models g_t into one ensemble f.
- Unlike bagging, the g_t are small and tend to underfit.
- Each g_t fits the points where the previous models made errors.

Weak Learners

A key ingredient of a boosting algorithm is a weak learner.

- Intuitively, this is a model that is slightly better than random.
- Examples of weak learners include: small linear models, small decision trees.

Structure of a Boosting Algorithm

The idea of *boosting* is to reduce *underfitting* by combining models that correct each others' errors.

- 1. Fit a weak learner g_0 on dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}$. Let f = g.
- 1. Compute weights $w^{(i)}$ for each *i* based on model predictions $f(x^{(i)})$ and targets $y^{(i)}$. Give more weight to points with errors.
- 1. Fit another weak learner g_1 on $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}$ with weights $w^{(i)}$.
- 1. Set $f_1 = g_0 + \alpha_1 g$ for some weight α_1 . Go to Step 2 and repeat.

In Python-like pseudocode this looks as follows:

```
weights = np.ones(n_data,)
for i in range(n_models):
    model = SimpleBaseModel().fit(X, y, weights)
    predictions = model.predict(X)
    weights = update_weights(weights, predictions)
    ensemble.add(model)
```

```
# output consensus prediction at test time:
y test = ensemble.consensus prediction(y test)
```

Origins of Boosting

Boosting algorithms were initially developed in the 90s within theoretical machine learning.

- Originally, boosting addressed a theoretical question of whether weak learners with >50% accuracy can be combined to form a strong learner.
- Eventually, this research led to a practical algorithm called *Adaboost*.

Today, there exist many algorithms that are considered types of boosting, even though they were not derived from a theoretical angle.

Algorithm: Adaboost

- **Type**: Supervised learning (classification).
- Model family: Ensembles of weak learners (often decision trees).
- **Objective function**: Exponential loss.
- **Optimizer**: Forward stagewise additive model building.

Defining Adaboost

One of the first practical boosting algorithms was Adaboost.

We start with uniform $w^{(i)} = 1/n$ and f = 0. Then for t = 1, 2, ..., T:

1. Fit weak learner g_t on \mathcal{D} with weights $w^{(i)}$.

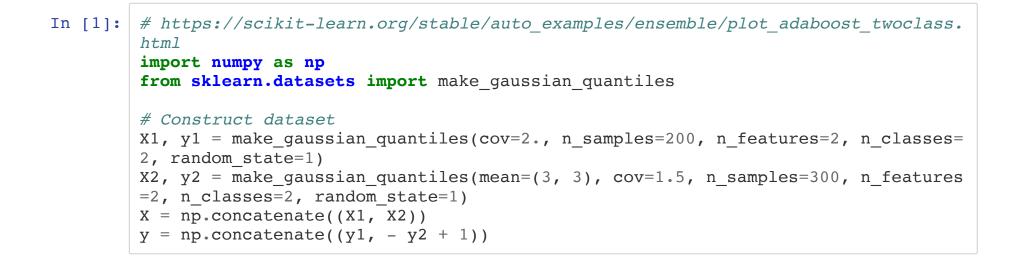
1. Compute misclassification error
$$e_t = \frac{\sum_{i=1}^n w^{(i)} \mathbb{I}\{y^{(i)} \neq f(x^{(i)})\}}{\sum_{i=1}^n w^{(i)}}$$

- 1. Compute model weight $\alpha_t = \log[(1 e_t)/e_t]$. Set $f \leftarrow f + \alpha_t g_t$.
- 1. Compute new data weights $w^{(i)} \leftarrow w^{(i)} \exp [\alpha_t \mathbb{I}\{y^{(i)} \neq f(x^{(i)})\}]$

Adaboost: An Example

Let's implement Adaboost on a simple dataset to see what it can do.

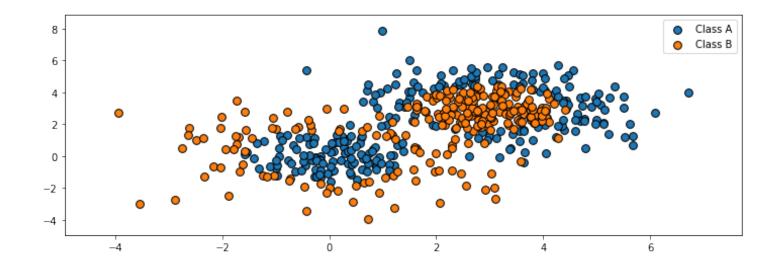
Let's start by creating a classification dataset.



We can visualize this dataset using matplotlib.

```
In [15]: import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [12, 4]
# Plot the training points
plot_colors, plot_step, class_names = "br", 0.02, "AB"
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
for i, n, c in zip(range(2), class_names, plot_colors):
    idx = np.where(y == i)
    plt.scatter(X[idx, 0], X[idx, 1], cmap=plt.cm.Paired, s=60, edgecolor='k', 1
    abel="Class %s" % n)
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.legend(loc='upper right')
```

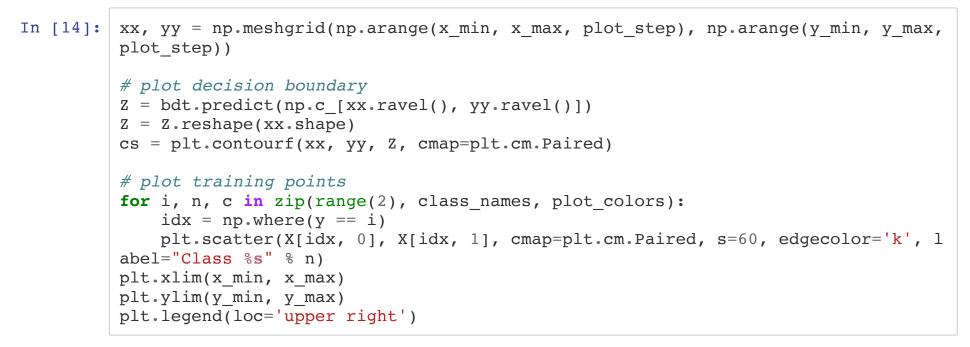
Out[15]: <matplotlib.legend.Legend at 0x12afda198>



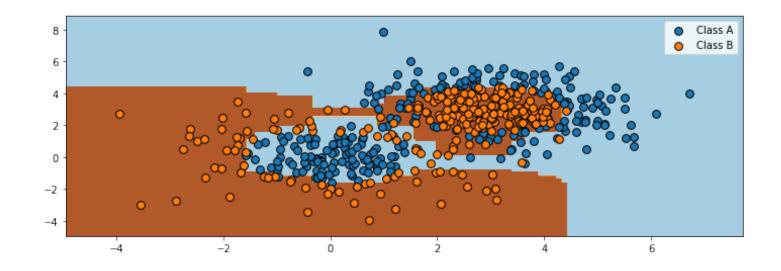
Let's now train Adaboost on this dataset.

```
Out[12]: AdaBoostClassifier(algorithm='SAMME',
base_estimator=DecisionTreeClassifier(max_depth=1),
n_estimators=200)
```

Visualizing the output of the algorithm, we see that it can learn a highly non-linear decision boundary to separate the two classes.



Out[14]: <matplotlib.legend.Legend at 0x12b3b8438>



Ensembling

Boosting and bagging are special cases of ensembling.

The idea of ensembling is to combine many models into one. Bagging and Boosting are ensembling techniques to reduce over- and under-fitting.

- In stacking, we train *m* independent models $g_j(x)$ (possibly from different model classes) and then train another model f(x) to prodict *y* from the outputs of the g_j .
- The Bayesian approach can also be seen as form of ensembling $P(y \mid x) = \int_{\theta} P(y \mid x, \theta) P(\theta \mid D) d\theta$ where we average models $P(y \mid x, \theta)$ using weights $P(\theta \mid D)$.

Pros and Cons of Ensembling

Ensembling is a useful tecnique in machine learning.

- It often helps squeeze out additional performance out of ML algorithms.
- Many algorithms (like Adaboost) are forms of ensembling.

Disadvantages include:

• It can be computationally expensive to train and use ensembles.

Part 2: Additive Models

Next, we are going to see another perspective on boosting and derive new boosting algorithms.

Review: Underfitting

Underfitting is another common problem in machine learning.

- The model is too simple to fit the data well (e.g., approximating a high degree polynomial with linear regression).
- As a result, the model is not accurate on training data and is not accurate on new data.

Review: Boosting

The idea of *boosting* is to reduce *underfitting* by combining models that correct each others' errors.

- As in bagging, we combine many models g_i into one ensemble f.
- Unlike bagging, the g_i are small and tend to underfit.
- Each g_i fits the points where the previous models made errors.

Additive Models

Boosting can be seen as a way of fitting an *additive model*:

$$f(x) = \sum_{t=1}^{T} \alpha_t g(x; \phi_t).$$

- The main model f(x) consists of T smaller models g with weights α_t and paramaters ϕ_t .
- The parameters are the α_t plus the parameters ϕ_t of each g.

This is more general than a linear model, because g can be non-linear in ϕ_t (therefore so is f).

Example: Boosting Algorithms

Boosting is one way of training additive models.

- 1. Fit a weak learner g_0 on dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}$. Let f = g.
- 1. Compute weights $w^{(i)}$ for each *i* based on model predictions $f(x^{(i)})$ and targets $y^{(i)}$. Give more weight to points with errors.
- 1. Fit another weak learner g_1 on $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}$ with weights $w^{(i)}$.
- 1. Set $f_1 = g_0 + \alpha_1 g$ for some weight α_1 . Go to Step 2 and repeat.

Forward Stagewise Additive Modeling

A general way to fit additive models is the forward stagewise approach.

- Suppose we have a loss $L : \mathcal{Y} \times \mathcal{Y} \to [0, \infty)$.
- Start with $f_0 = \arg$.

$$\min_{\phi}$$

$$\sum_{i=1}^{n} L \\ (y^{(i)}, \\ g(x^{(i)}; \phi))$$

• At each iteration t we fit the best addition to the current model. $n = \frac{n}{2}$

$$\alpha_t, \phi_t = \arg\min_{\alpha, \phi} \sum_{i=1}^{\infty} L(y^{(i)}, f_{t-1}(x^{(i)}) + \alpha g(x^{(i)}; \phi))$$

Practical Considerations

- Popular choices of g include cubic splines, decision trees and kernelized models.
- We may use a fix number of iterations *T* or early stopping when the error on a holdout set no longer improves.
- An important design choice is the loss *L*.

Exponential Loss

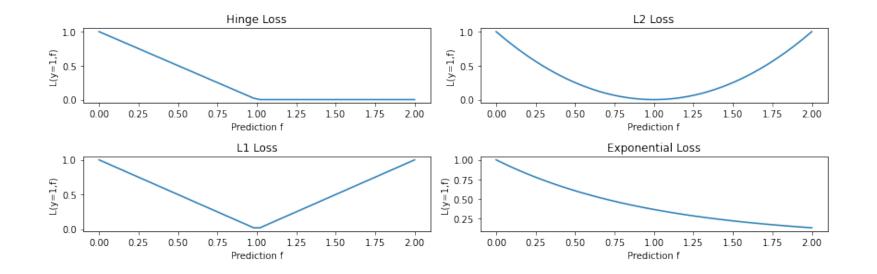
Give a binary classification problem with labels $\mathcal{Y} = \{-1, +1\}$, the exponential loss is defined as

$$L(y, f) = \exp(-y \cdot f).$$

- When y = 1, L is small when $f \to \infty$.
- When y = -1, *L* is small when $f \to -\infty$.

Let's visualize the exponential loss and compare it to other losses.

```
In [23]:
         from matplotlib import pyplot as plt
          import numpy as np
         plt.rcParams['figure.figsize'] = [12, 4]
         # define the losses for a target of y=1
         losses = {
              'Hinge' : lambda f: np.maximum(1 - f, 0),
              'L2': lambda f: (1-f)**2,
              'L1': lambda f: np.abs(f-1),
              'Exponential': lambda f: np.exp(-f)
          }
         # plot them
         f = np.linspace(0, 2)
         fig, axes = plt.subplots(2,2)
         for ax, (name, loss) in zip(axes.flatten(), losses.items()):
             ax.plot(f, loss(f))
             ax.set title('%s Loss' % name)
             ax.set xlabel('Prediction f')
             ax.set ylabel('L(y=1,f)')
         plt.tight layout()
```



Special Case: Adaboost

Adaboost is an instance of forward stagewise additive modeling with the expoential loss.

At each step *t* we minimize

$$L_t = \sum_{i=1}^n e^{-y^{(i)}(f_{t-1}(x^{(i)}) + \alpha g(x^{(i)}; \phi))} = \sum_{i=1}^n w^{(i)} \exp\left(-y^{(i)} \alpha g(x^{(i)}; \phi)\right)$$

with $w^{(i)} = \exp(-y^{(i)} f_{t-1}(x^{(i)})).$

We can derive the Adaboost update rules from this equation.

Suppose that $g(y; \phi) \in \{-1, 1\}$. With a bit of algebraic manipulations, we get that: $L_t = e^{\alpha} \sum_{y^{(i)} \neq g(x^{(i)})} w^{(i)} + e^{-\alpha} \sum_{y^{(i)} = g(x^{(i)})} w^{(i)}$ $= (e^{\alpha} - e^{-\alpha}) \sum_{i=1}^n w^{(i)} \mathbb{I}\{y^{(i)} \neq g(x^{(i)})\} + e^{-\alpha} \sum_{i=1}^n w^{(i)}.$

where $[\{\cdot\}$ is the indicator function.

From there, we get that:

$$\phi_{t} = \arg \min_{\phi} \sum_{i=1}^{n} w^{(i)} \mathbb{I}\{y^{(i)} \neq g(x^{(i)}; \phi)\}$$

$$\alpha_{t} = \log[(1 - e_{t})/e_{t}]$$
where $e_{t} = \frac{\sum_{i=1}^{n} w^{(i)} \mathbb{I}\{y^{(i)} \neq f(x^{(i)})\}}{\sum_{i=1}^{n} w^{(i)}\}}.$

These are update rules for Adaboost, and it's not hard to show that the update rule for $w^{(i)}$ is the same as well.

Squared Loss

Another popular choice of loss is the squared loss.

$$L(y, f) = (y - f)^2.$$

The resulting algorithm is often called L2Boost. At step t we minimize

$$\sum_{i=1}^{n} (r_t^{(i)} - g(x^{(i)}; \phi))^2,$$

where $r_t^{(i)} = y^{(i)} - f(x^{(i)})_{t-1}$ is the residual from the model at time t - 1.

Logistic Loss

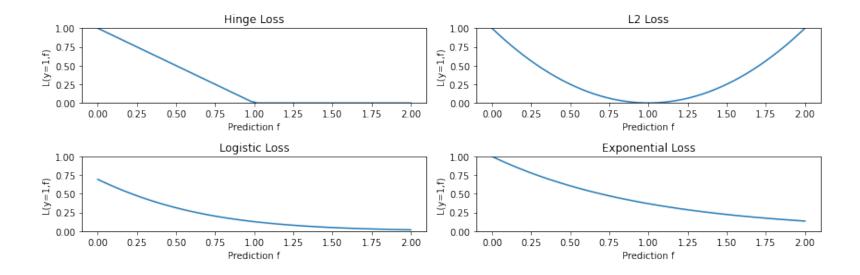
Another common loss is the log-loss. When $\mathcal{Y} = \{-1, 1\}$ it is defined as:

$$L(y, f) = \log(1 + \exp(-2 \cdot y \cdot f)).$$

This looks like the log of the exponential loss; it is less sensitive to outliers since it doesn't penalize large errors as much.

```
In [25]: from matplotlib import pyplot as plt
import numpy as np
plt.rcParams['figure.figsize'] = [12, 4]
# define the losses for a target of y=1
```

```
losses = {
    'Hinge' : lambda f: np.maximum(1 - f, 0),
    'L2': lambda f: (1-f)**2,
    'Logistic': lambda f: np.log(1+np.exp(-2*f)),
    'Exponential': lambda f: np.exp(-f)
}
# plot them
f = np.linspace(0, 2)
fig, axes = plt.subplots(2,2)
for ax, (name, loss) in zip(axes.flatten(), losses.items()):
    ax.plot(f, loss(f))
   ax.set title('%s Loss' % name)
    ax.set xlabel('Prediction f')
   ax.set ylabel('L(y=1,f)')
   ax.set ylim([0,1])
plt.tight layout()
```



In the context of boosting, we minimize

$$J(\alpha, \phi) = \sum_{i=1}^{n} \log \left(1 + \exp \left(-2y^{(i)}(f_{t-1}(x^{(i)}) + \alpha g(x^{(i)}; \phi) \right) \right).$$

This give a different weight update compared to Adabost. This algorithm is called LogitBoost.

Pros and Cons of Boosting

The boosting algorithms we have seen so far improve over Adaboost.

- They optimize a wide range of objectives.
- Thus, they are more robust to outliers and extend beyond classification.

Cons:

- Computational time is still an issue.
- Optimizing greedily over each ϕ_t can take time.
- Each loss requires specialized derivations.

Summary

• Additive models have the form

$$f(x) = \sum_{t=1}^{T} \alpha_t g(x; \phi_t).$$

- These models can be fit using the forward stagewise additive approach.
- This reproduces Adaboost and can be used to derive new boosting-type algorithms.

Part 3: Gradient Boosting

We are now going to see another way of deriving boosting algorithms that is inspired by gradient descent.

Review: Boosting

The idea of *boosting* is to reduce *underfitting* by combining models that correct each others' errors.

- As in bagging, we combine many models g_i into one ensemble f.
- Unlike bagging, the g_i are small and tend to underfit.
- Each g_i fits the points where the previous models made errors.

Review: Additive Models

Boosting can be seen as a way of fitting an *additive model*:

$$f(x) = \sum_{t=1}^{T} \alpha_t g(x; \phi_t).$$

- The main model f(x) consists of T smaller models g with weights α_t and paramaters ϕ_t .
- The parameters are the α_t plus the parameters ϕ_t of each g.

This is not a linear model, because g can be non-linear in ϕ_t (therefore so is f).

Review: Forward Stagewise Additive Modeling

A general way to fit additive models is the forward stagewise approach.

- Suppose we have a loss $L : \mathcal{Y} \times \mathcal{Y} \to [0, \infty)$.
- Start with $f_0 = \arg$. $\min_{\phi} \sum_{i=1}^{n} L$ $(y^{(i)}, g(x^{(i)}; \phi))$
- At each iteration *t* we fit the best addition to the current model.

$$\alpha_t, \phi_t = \arg \min_{\alpha, \phi} \sum_{i=1}^n L(y^{(i)}, f_{t-1}(x^{(i)}) + \alpha g(x^{(i)}; \phi))$$

Losses for Additive Models

We have seen several losses that can be used with the forward stagewise additive approach.

- The exponential loss $L(y, f) = \exp(-yf)$ gives us Adaboost.
- The log-loss $L(y, f) = \log(1 + \exp(-2yf))$ is more robust to outliers.
- The squared loss $L(y, f) = (y f)^2$ can be used for regression.

Limitations of Forward Stagewise Additive Modeling

Forward stagewise additive modeling is not without limitations.

- There may exist other losses for which it is complex to derive boosting-type weight update rules.
- At each step, we may need to solve a costly optimization problem over ϕ_t .
- Optimizing each ϕ_t greedily may cause us to overfit.

Functional Optimization

Functional optimization offers a different angle on boosting algorithms and a recipe for new algorithms.

- Consider optimizing a loss over arbitrary functions $f : \mathcal{X} \to \mathcal{Y}$.
- Functional optimization consists in solving the problem $\min_{f} \sum_{i=1}^{n} L(y^{(i)}, f(x^{(i)})).$ over the space of all possible f.
- It's easiest to think about f as an infinite dimensional vector indexed by $x \in \mathcal{X}$.

To simplify our explanations, we will assume that there exists a true deterministic mapping

Functional Gradients

Consider solving the optimization problem using gradient descent:

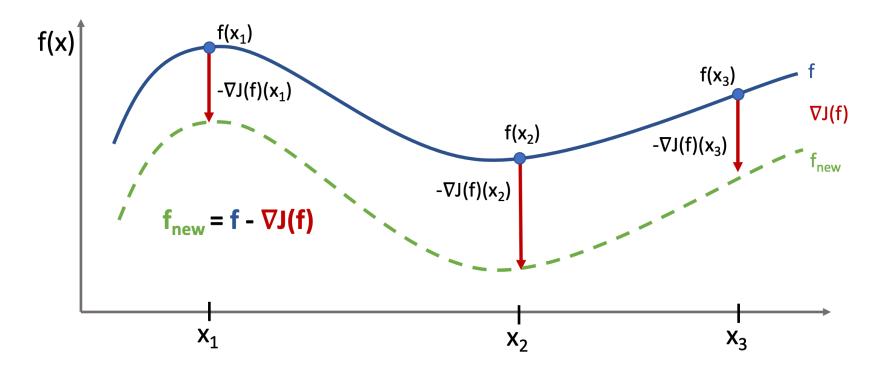
$$J(f) = \min_{f} \sum_{i=1}^{n} L(y^{(i)}, f(x^{(i)})).$$

We may define the functional gradient of this loss at f_0 as a function $\nabla J(f_0) : \mathcal{X} \to \mathbb{R}$ $\nabla J(f_0)(x) = \left. \frac{\partial L(\mathbf{y}, \mathbf{f})}{\partial \mathbf{f}} \right|_{\mathbf{f}=f_0(x), \mathbf{y}=f^*(x)}.$ Let's make a few observations about the functional gradient $\nabla I(f_0)(\mathbf{x}) = \frac{\partial L(\mathbf{y}, \mathbf{f})}{\partial L(\mathbf{y}, \mathbf{f})}$

$$\nabla J(f_0)(x) = \left. \frac{\partial L(\mathbf{y}, \mathbf{1})}{\partial \mathbf{f}} \right|_{\mathbf{f}=f_0(x), \mathbf{y}=f^*(x)}.$$

- It's an object indexed by $x \in \mathcal{X}$.
- At each $x \in \mathcal{X}$, $\nabla J(f_0)(x)$ tells us how to modify $f_0(x)$ to make $L(f^*(x), f_0(x))$ smaller.

This is best understood via a picture.



Functional Gradient Descent

We can optimize our objective using gradient descent in functional space via the usual update rule:

 $f \leftarrow f - \alpha \nabla J(f).$

As defined, this is not a practical algorithm:

- Minimizing the objective is easy because it's unconstrained.
- The optimal *f* only fits the training data, and doesn't generalize.
- We only know J(f) at n training points.

Modeling Functional Gradients

We will address this problem by learning a model of gradients.

- In supervised learning, we only have access to n data points that describe the true $\mathcal{X} \to \mathcal{Y}$ mapping.
- We learn a model $f_{\theta} : \mathcal{X} \to \mathcal{Y}$ within a class \mathcal{M} to approximate f^* .
- The model extrapolates beyond the training set. Given enough datapoints, f_{θ} learns a true mapping.

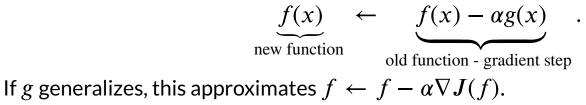
We will apply the same idea to gradients.

• We assume a model $g_{\theta} : \mathcal{X} \to R$ of the functional gradient $\nabla J(f)$ within a class \mathcal{M} .

$$g \in \mathcal{M}$$
 $g \approx \nabla_{\mathbf{f}} J(\mathbf{f})$

• The model extrapolates beyond the training set. Given enough datapoints, g_{θ} learns $\nabla J(f)$.

Functional descent then has the form:



Fitting Functional Gradients

What does it mean to approximate a functional gradient $g \approx \nabla_{\mathbf{f}} J(\mathbf{f})$ in practice? We can use standard supervised learning.

Suppose we have a fixed function f and we want to estimate the functional gradient of L $\frac{\partial L(\mathbf{y}, \mathbf{f})}{\partial \mathbf{f}}\Big|_{\mathbf{f}=f_0(x), \mathbf{y}=f^*(x)}.$

at any $x \in \mathcal{X}$ \$

- 1. We define a loss L_g (e.g., L2 loss) measure how well $g \approx \nabla J(f).$
- 1. We compute $abla_{\mathbf{f}} J(\mathbf{f})$ on the training dataset:

$$\mathcal{D}_{g} = \left\{ \left(x^{(i)}, \frac{\partial L(y^{(i)}, f)}{\partial f} \Big|_{f=f(x^{(i)})} \right), i = 1, 2, ..., n \right\}$$

functional derivative $\nabla_{\mathbf{f}} J(\mathbf{f})_{i}$ at $f(x^{(i)})$

1. We train a model $g : \mathcal{X} \to \mathbb{R}$ on \mathcal{D}_g to predict functional gradients at any x: $g(x) \approx \left. \frac{\partial L(y, f)}{\partial f} \right|_{f=f_0(x), y=f^*(x)}$.

Gradient Boosting

Gradient boosting is a procedure that performs functional gradient descent with approximate gradients.

Start with f(x) = 0. Then, at each step t > 1:

1. Create a training dataset
$$\mathcal{D}_g$$
 and fit $g_t(x^{(i)})$ using loss L_g :
 $g_t(x) \approx \left. \frac{\partial L(y, f)}{\partial f} \right|_{f=f_0(x), y=f^*(x)}$.

1. Take a step of gradient descent using approximate gradients: $f_t(x) = f_{t-1}(x) - \alpha \cdot g_t(x).$

Interpreting Gradient Boosting

Notice how after T steps we get an additive model of the form

$$f(x) = \sum_{t=1}^{I} \alpha_t g_t(x).$$

This looks like the output of a boosting algorithm!

- This works for any differentiable loss *L*.
- It does not require any mathematical derivations for new L.

Boosting vs. Gradient Boosting

Consider, for example, L2Boost, which optimizes the L2 loss $L(y, f) = \frac{1}{2}(y - f)^2.$

At step *t* we minimize

$$\sum_{i=1}^{n} (r_t^{(i)} - g(x^{(i)}; \phi))^2,$$

where $r_t^{(i)} = y^{(i)} - f(x^{(i)})_{t-1}$ is the residual from the model at time t - 1.

Observe that the residual

$$\begin{aligned} r_t^{(i)} &= y^{(i)} - f(x^{(i)})_{t-1} \\ \text{is also the gradient of the } L2 \text{ loss with respect to } f \text{ as } f(x^{(i)}) \\ r_t^{(i)} &= \left. \frac{\partial L(y^{(i)}, \mathbf{f})}{\partial \mathbf{f}} \right|_{\mathbf{f} = f_0(x)} \end{aligned}$$

Most boosting algorithms are special cases of gradient boosting in this way.

Losses for Gradient Boosting

Gradient boosting can optimize a wide range of losses.

- 1. Regression losses:
 - L2, L1, and Huber (L1/L2 interpolation) losses.
 - Quantile loss: estimates quantiles of distribution of p(y|x).
- 2. Classification losses:
 - Log-loss, softmax loss, exponential loss, negative binomial likelihood, etc.

Practical Considerations

When using gradient boosting these additional facts are useful:

- We most often use small decision trees as the learner g_t . Thus, input pre-processing is minimal.
- We can regularize by controlling tree size, step size α , and using *early stopping*.
- We can scale-up gradient boosting to big data by subsampling data at each iteration (a form of *stochastic* gradient descent).

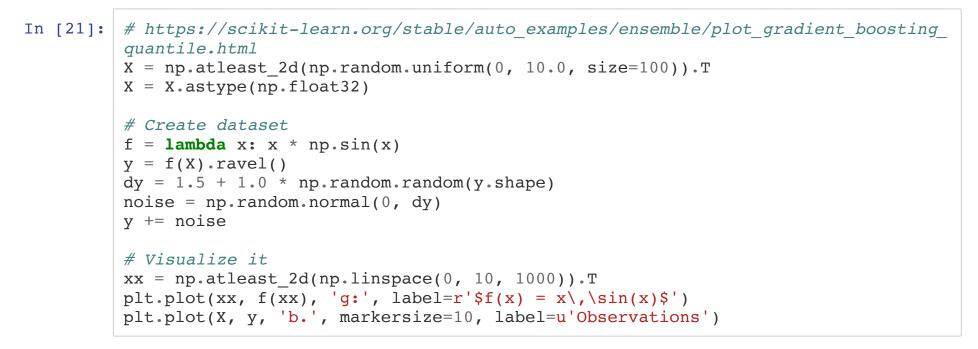
Algorithm: Gradient Boosting

- **Type**: Supervised learning (classification and regression).
- Model family: Ensembles of weak learners (often decision trees).
- **Objective function**: Any differentiable loss function.
- **Optimizer**: Gradient descent in functional space. Weak learner uses its own optimizer.
- **Probabilistic interpretation**: None in general; certain losses may have one.

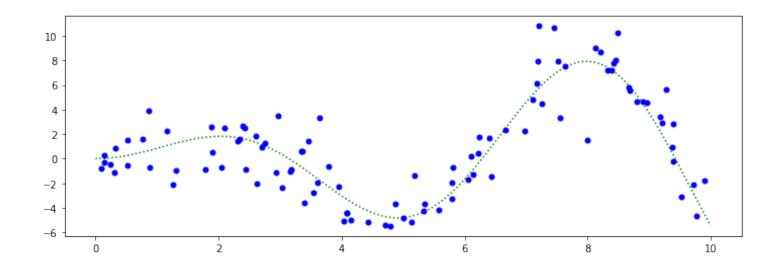
Gradient Boosting: An Example

Let's now try running Gradient Boosted Decision Trees on a small regression dataset.

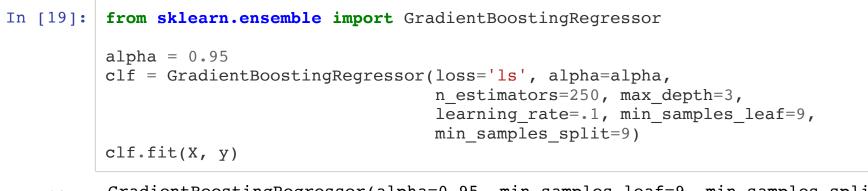
First we create the dataset.



Out[21]: [<matplotlib.lines.Line2D at 0x12ed61898>]



Next, we train a GBDT regressor.

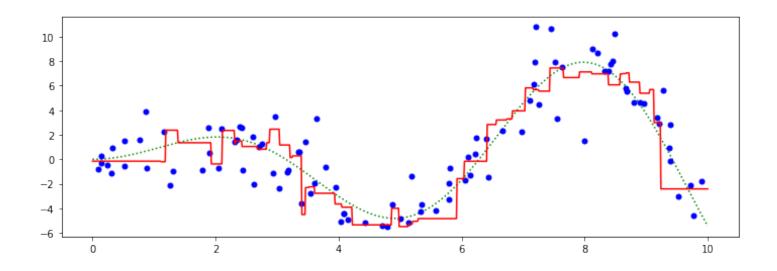


```
n_estimators=250)
```

We may now visualize its predictions

```
In [22]: y_pred = clf.predict(xx)
plt.plot(xx, f(xx), 'g:', label=r'$f(x) = x\,\sin(x)$')
plt.plot(X, y, 'b.', markersize=10, label=u'Observations')
plt.plot(xx, y pred, 'r-', label=u'Prediction')
```

Out[22]: [<matplotlib.lines.Line2D at 0x12c98e438>]



Pros and Cons of Gradient Boosting

Gradient boosted decision trees (GBTs) are one of the best off-the-shelf ML algorithms that exist, often on par with deep learning.

- Attain state-of-the-art performance. GBTs have won the most Kaggle competitions.
- Require little data pre-processing and tuning.
- Work with any objective, including probabilistic ones.

Their main limitations are:

- GBTs don't work with unstructured data like images, audio.
- Implementations not as flexible as modern neural net libraries.

In	[]:	
In	[]:	

In []:	
In []:	

Functional Optimization

Functional optimization offers a different angle on boosting algorithms and a recipe for new algorithms.

- Consider optimizing a loss over arbitrary functions $f : \mathcal{X} \to \mathcal{Y}$.
- Since we only have *n* datapoints, this reduces to optimizing over vectors $\mathbf{f} \in \mathbb{R}^n$
- Thus, functional optimization consists in solving the problem

$$\min_{\mathbf{f}} \sum_{i=1}^{n} L(y^{(i)}, \mathbf{f}_{i}).$$

Functional Gradients

Consider solving the optimization problem using gradient descent:

$$J(\mathbf{f}) = \min_{\mathbf{f}} \sum_{i=1}^{n} L(y^{(i)}, \mathbf{f}_i).$$

We may define the functional gradient of this loss as

$$\nabla_{\mathbf{f}} J(\mathbf{f}) = \begin{bmatrix} \frac{\partial L(y^{(1)}, \mathbf{f}_1)}{\partial \mathbf{f}_1} \\ \frac{\partial L(y^{(2)}, \mathbf{f}_2)}{\partial \mathbf{f}_2} \\ \vdots \\ \frac{\partial L(y^{(n)}, \mathbf{f}_n)}{\partial \mathbf{f}_n} \end{bmatrix}$$

٠

Functional Gradient Descent

We can optimize our objective using gradient descent in functional space via the usual update rule:

 $\mathbf{f} \leftarrow \mathbf{f} - \alpha \nabla_{\mathbf{f}} J(\mathbf{f}).$

As defined, this is not a practical algorithm:

- Minimizing the objective is easy because it's unconstrained.
- The optimal ${f f}$ only fits the training data, and doesn't generalize.
- We want a way to optimize $J(\mathbf{f})$ at any *n* training points.

Modeling Functional Gradients

We will address this problem by learning a model of gradients.

In supervised learning, we define a model $f : \mathcal{X} \to \mathcal{Y}$ for \mathbf{f} within a class \mathcal{M} . $f \in \mathcal{M} \qquad f \approx \mathbf{f}$ The model extrapolates beyond the training set and ensures we generalize.

We will apply the same idea to gradients. We assume a model $g: \mathcal{X} \to R$ of the functional gradient $\nabla_{\mathbf{f}} J(\mathbf{f})$ within a class \mathcal{M} .

$$g \in \mathcal{M}$$
 $g \approx \nabla_{\mathbf{f}} J(\mathbf{f})$

Our model of gradients can generalize beyond the training set.

Functional descent then has the form:

$$\underbrace{f(x)}_{\text{w function}} \leftarrow \underbrace{f(x) - \alpha g(x)}_{\text{eld function}}$$

nev

old function - gradient step

If g generalizes, this approximates $\mathbf{f} \leftarrow \mathbf{f} - \alpha \nabla_{\mathbf{f}} J(\mathbf{f})$ at any *n* points.

Fitting Functional Gradients

What does it mean to approximate a functional gradient $g \approx \nabla_{\mathbf{f}} J(\mathbf{f})$ in practice? We can use standard supervised learning.

Suppose we have a fixed function f and we want to estimate the functional gradient of L

$$\frac{\partial L(y, \mathbf{f})}{\partial \mathbf{f}}\Big|_{\mathbf{f}=f(x)}$$

at any value of f(x).

1. We define a loss L_g (e.g., L2 loss) measure how well $g \approx \nabla_{\mathbf{f}} J(\mathbf{f})$.

1. We compute $abla_{\mathbf{f}} J(\mathbf{f})$ on the training dataset:

$$\mathcal{D}_{g} = \left\{ \left(x^{(i)}, \frac{\partial L(y, f)}{\partial f} \Big|_{f=f(x^{(i)})} \right), i = 1, 2, ..., n \right\}$$

functional derivative $\nabla_{\mathbf{f}} J(\mathbf{f})_{i}$ at $f(x^{(i)})$

1. We train a model $g : \mathcal{X} \to \mathbb{R}$ on \mathcal{D}_g to predict functional gradients at any x: $g(x) \approx \frac{\partial L(y, f)}{\partial f}\Big|_{f=f(x)}$

Gradient Boosting

Gradient boosting is a procedure that performs functional gradient descent with approximate gradients.

Start with f(x) = 0. Then, at each step t > 1:

1. Create a training dataset
$$\mathcal{D}_g$$
 and fit $g_t(x^{(i)})$ using loss L_g :
 $g_t(x) \approx \left. \frac{\partial L(y, f)}{\partial f} \right|_{f=f(x)}$.

1. Take a step of gradient descent using approximate gradients: f(x) = f(x) - g(x)

Interpreting Gradient Boosting

Notice how after T steps we get an additive model of the form

$$f(x) = \sum_{t=1}^{I} \alpha_t g_t(x).$$

This looks like the output of a boosting algorithm!

- This works for any differentiable loss *L*.
- It does not require any mathematical derivations for new L.

Losses for Gradient Boosting

Gradient boosting can optimize a wide range of losses.

- 1. Regression losses:
 - L2, L1, and Huber (L1/L2 interpolation) losses.
 - Quantile loss: estimates quantiles of distribution of p(y|x).
- 2. Classification losses:
 - Log-loss, softmax loss, exponential loss, negative binomial likelihood, etc.

Practical Considerations

When using gradient boosting these additional facts are useful:

- We most often use small decision trees as the learner g_t . Thus, input pre-processing is minimal.
- We can regularize by controlling tree size, step size α , and using *early stopping*.
- We can scale-up gradient boosting to big data by subsampling data at each iteration (a form of *stochastic* gradient descent).

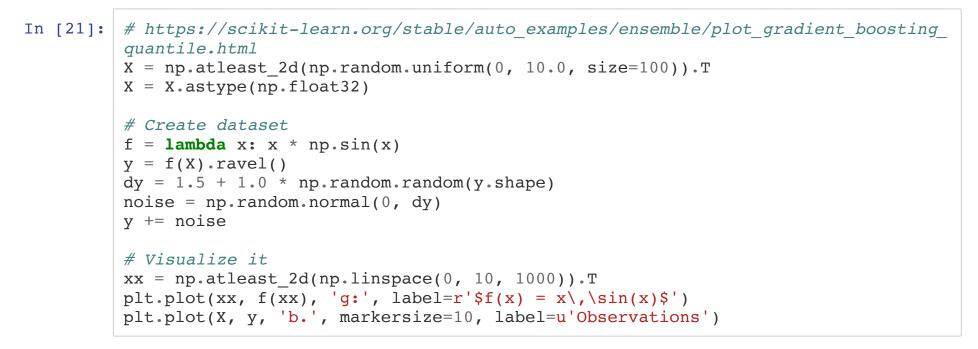
Algorithm: Gradient Boosting

- **Type**: Supervised learning (classification and regression).
- Model family: Ensembles of weak learners (often decision trees).
- **Objective function**: Any differentiable loss function.
- **Optimizer**: Gradient descent in functional space. Weak learner uses its own optimizer.
- **Probabilistic interpretation**: None in general; certain losses may have one.

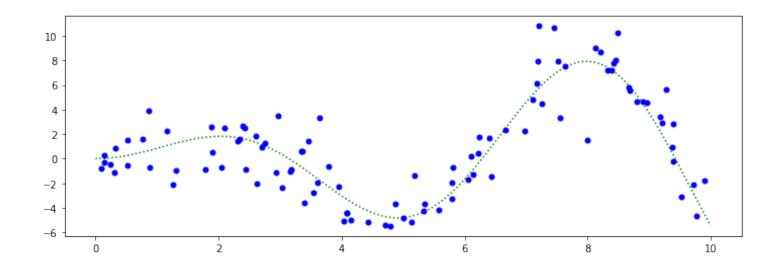
Gradient Boosting: An Example

Let's now try running Gradient Boosted Decision Trees on a small regression dataset.

First we create the dataset.



Out[21]: [<matplotlib.lines.Line2D at 0x12ed61898>]



Next, we train a GBDT regressor.

```
In [19]: from sklearn.ensemble import GradientBoostingRegressor
```

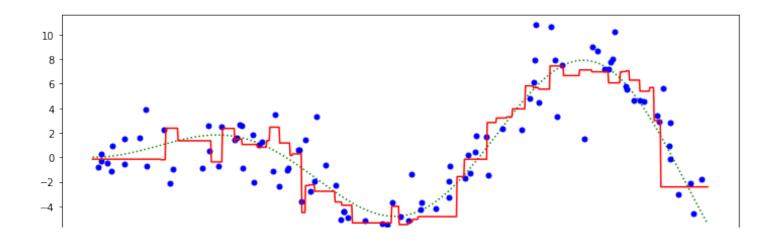
Out[19]: GradientBoostingRegressor(alpha=0.95, min_samples_leaf=9, min_samples_split=
 9,

```
n_estimators=250)
```

We may now visualize its predictions

```
In [22]: y_pred = clf.predict(xx)
plt.plot(xx, f(xx), 'g:', label=r'$f(x) = x\,\sin(x)$')
plt.plot(X, y, 'b.', markersize=10, label=u'Observations')
plt.plot(xx, y pred, 'r-', label=u'Prediction')
```

Out[22]: [<matplotlib.lines.Line2D at 0x12c98e438>]



Pros and Cons of Gradient Boosting

Gradient boosted decision trees (GBTs) are one of the best off-the-shelf ML algorithms that exist, often on par with deep learning.

- Attain state-of-the-art performance. GBTs have won the most Kaggle competitions.
- Require little data pre-processing and tuning.
- Work with any objective, including probabilistic ones.

Their main limitations are:

GRTs don't work with unstructured data like images audio